Energy and Design Evaluation <u>Report</u>

Rendering Courtesy Moody Nolan, Inc.

George W. Hays PK-8

Cincinnati Public School Cincinnati, OH

> Prepared For Dr. Jelena Srebric

Rodrick A. Crousey

The Pennsylvania State University Architectural Engineering Mechanical Option October 27, 2006

Table of Contents

Executive Summary	1
LEED-NC 2.2 Assessment	2
Mechanical System Lost Rentable Space	.3
ASHRAE 90.1 Compliance. Building Envelope. Lighting & Power. HVAC Systems.	.4 .4 .5 .6
Mechanical System First Cost	.8
Design Load Estimation	.9
Annual Energy Consumption & Costs	11
Bibliography	12
Appendix A- Leeds	13
Appendix B- Standard 90.1	14
Appendix C- Building Simulation2	23
Appendix D- Simulation Schedules	26
Appendix E- Plant Inputs	32
Appendix F- AHU Inputs	33

George W. Hays PK-8 Technical Assignment # 2

Executive Summary

This report is to analyze the George W. Hays PK-8 public school with respect to energy consumption and green design. Two major national standards that deal with these issues are the standards developed by The Leadership in Energy and Environmental Design (LEED), and American Society of Heating Air Conditioning and Refrigeration Engineers (ASHRAE) Standard 90.1. Along with comparison of the building with National Standards, a complete yearly energy analysis of the structure was created.

The building was checked for LEED certification potential in applications to the mechanical sections. LEED checks for the environmentally and socially friendliness of the building. The George W. Hays did not accumulate a sufficient number of points to obtain any LEED Certification.

The building did not comply with ASHRAE Standard 90.1 due to an excess lighting density. However, for mechanical sections where sufficient information was known about the system, the school passed Standard 90.1 requirements.

To complete the energy analysis of the building, a complete building simulation was created using Carrier's Hourly Analysis Program. This program returned estimations for a yearly energy consumption of the building.

George W. Hays PK-8 Technical Assignment # 2

LEED-NC 2.2 Assessment

The Leadership in Energy and Environmental Design, LEED, is a national coalition with the goal of promoting environmentally conscious, energy effective, and healthy occupant conditions in building design. To help recognize green building design, members of the LEED consol define green building design numerically by relating aspects of green office design with points. These points are used to rate the building as one of five categories. The lowest category doe not receive any certification. Buildings that have accumulated fewer than 26 points fall into this category, and are not considered a green building. A LEED certified building has between 26 and 32 points. Next, is the Silver Certification of 33 through 38 points. Gold follows with 39 to 51 points. Finally, 52 to 69 points earns the building a platinum status. Since the George W. Hays PK-8 is a school and not an office building, the majority of the space does not apply to LEEDS. However, because of some of the similarities between office spaces and education facilities, assuming that the building were to pass all non-mechanical requirements, Figure A-1 from Appendix A shows LEED points that the Hays School may qualify for.

The LEED point criteria are broken into six different categories, Sustainable Site, Water Efficiency, Energy & Atmosphere, Materials & Resources, Indoor Environmental Quality, and Innovation & Design Process. Sections not applicable to the Mechanical aspect of design and without sufficient knowledge to grant LEED credits were omitted. Of the three categories shown in Figure A-1 in Appendix A, only 10 points were acquired and two required prerequisites failed. In order for this building to obtain a LEED Certification, 16 points would need to be obtained in the three remaining categories and all failing prerequisites would have to be modified.

George W. Hays PK-8 Technical Assignment # 2

Mechanical System Lost Rentable Space

The entire facility building is for the owner, Cincinnati Public Schools. Therefore none of the building is rented. Because of this, the lost rentable space is not a major factor for the owner. If the owner desired more space, it would not be difficult to expand the building without increasing the height. However, the mechanical system does occupy a significant portion of the building. The three Air Handling Units, AHUs, are each in a separate space. Of those three, one is in a mechanical mezzanine, not a mechanical room. AHU-1 serves three stories and AHUs 2 & 3 only serve two stories. This results in minimal lost space due to vertical mechanical shafts. The remaining mechanical room is isolated from the rest of the spaces in such a way that it is an addition to the space that was not likely to be useable space otherwise. The four mechanical rooms take up a total area of 4303 ft², or 6.8% of the total building square footage.

George W. Hays PK-8 Technical Assignment # 2

ASHRAE 90.1 Compliance

ASHRAE 90.1 is a national standard of guidelines for designing energyefficient buildings. This report will analyze the George W. Hays School to determine if it meets the requirements to be considered an energy-efficient building by ASHRAE 90.1. Because of limited resources, not all aspects of 90.1 were analyzed. Instead this section focuses on the mechanical compliance. The main components that will be analyzed are, Building Envelope, Lighting & Power, and sections of HVAC.

ASHRAE 90.1 Compliance - Building Envelope

The building envelope was analyzed using two different wall types. Wall type one is composed of monarch bricks, insulation, and concrete masonry units (CMU). Wall type two contains corrugated metal panel (CMP), insulation, and CMU. Different wall type areas and orientations were found on drawing documents and engineering reports. The R-Values of these materials were determined from the architectural drawings. To determine the corresponding U-value, Equation 2-1 was used.

$$U = \frac{1}{\sum R} \quad (2-1)$$

These values were then compared with the values in ASHRAE Standard 90.1 Table 5.5-4. Because the structure is on a flat site entirely above grade, both of these walls were analyzed as "Mass Walls, Above Grade." The conclusions of this analysis are found in Figure B-1 of Appendix B.

The facility has a total glass area of 2,389 ft², while the building has a surface area of 31,988 ft². The vertical glazing percentage, 2,389/31,988, comes to be 6.9% of the vertical walls. This low percentage places the building in the 0-10% Vertical Glazing category of ASHRAE 90.1 Table 5.5-4. These surfaces were checked for a maximum U value dependant on the component being either fixed or operable, and they were checked for a maximum SHGC value dependant on a North or Other orientation. The conclusions of this analysis are found in Figure B-2 of Appendix B.

The building passed all requirements to meet the Building Envelope portion of ASHRAE Standard 90.1.

George W. Hays PK-8 Technical Assignment # 2

ASHRAE 90.1 Compliance – Lighting & Power

ASHRAE 90.1 Power requirements demand no greater then a 2% voltage drop for feeders, and no more then a 3% voltage drop for branch circuits. This value is found by determining the resistance of the wire per length of wire. From this value the overall resistance in the entire branch or circuit of wire is the resistance per length times the length. The voltage drop across this length is:

Where the current is in Amps and the resistance is in Ohms. Keeping these values within the 2% and 3% voltage drops reduces lost energy due to heat from excessive resistance.

According to engineering reports, all feeder wires were designed for less than a 2% voltage drop, and all branch circuits were designed for no more then 3% voltage drop to comply with Standard 90.1.

ASHRAE 90.1 Section 9.2.2.3, Interior Lighting Power, calls for Section 9.5 to determine the maximum wattage per square foot. The only interior lighting fixtures in this building exempt from the analysis were exit signs; all other lights were accounted for.

The allowed wattage for the building was found using Table 9.5.1 from Standard 90.1. This table is shown in Figure B-4, of Appendix B. This Watt/sq ft value was then multiplied by the total building square footage,

 $1.2 \text{ Watt/ft}^2 \ge 63259 \text{ ft}^2 = 75,911 \text{ Watt}$

This value was then compared against the actual wattage of the building.

Light fixture quantities were found from the Architectural drawings. The lighting schedules were then used to determine the wattage per light fixture. This wattage was summed through the entire building, which showed a total interior lighting power of 85,921 Watts. The total building square footage was calculated to be 63,259 ft². Though this building fails ASHRAE 90.1 Section 5, the space-by-space method in Section 6, is also acceptable for compliance.

George W. Hays PK-8 Technical Assignment # 2

The Section 6 space-by-space method analysis was based off of values from ASHRAE 90.1, Table 9.6.1. The allowable Watts/ft² for each space was then multiplied by the area of each space. The sum of all spaces, shown in Figure, B-3 of Appendix B, resulted in a total allowable power of 74,787 Watts. This value is lower then the allowable wattage in Section 5. As a result the building does not pass the allowable Lighting Power portion of ASHRAE Standard 90.1.

In addition to interior lighting density, the standard also calls for a minimum exterior lighting density. This is based on Watt/sq ft of parking area, walkway area, and building façade area. Standard 90.1 allows for the total allowed wattages by summing up the determined allowed wattage for each component. This allows the building the opportunity to exceed wattages in one area, for example the parking lot, if the walkway wattage is under the requirement by at least the same amount.

The allowance for parking lots is 0.15 Watt/ft^2 , for walkways it is 0.2 Watt/ft^2 , and for the build façade it is 0.2 Watt/ft^2 all found in Table 9.4.5 of Standard 90.1. However, there is insufficient data as to whether this building passes this compliance or not.

ASHRAE 90.1 Compliance – HVAC Systems

For HVAC compliance the various components of the system were analyzed independently. These components include: ductwork insulation, pipe insulation, boiler efficiency, condensing unit efficiency, and chiller efficiency.

According to 90.1 Table 6.8.2A, no interior insulation on ductwork in Climate Zone 4 is required. The George W. Hays School has no exterior duct and therefore passes this section of ASHRAE standard 90.1.

Any pipes carrying water in the temperature range laid out in 90.1 Table 6.8.2A are required to have an appropriate amount of insulation. Engineering reports showed that all piping equipment was designed beyond these minimum standards.

The two natural gas boilers are required to meet the minimum parameters of a boiler efficiency of 80%. The building has two identical 1500 MBH Boilers. Mechanical Schedules show that both of these boilers pass the ASHRAE 90.1 requirement with an efficiency of 85%.

George W. Hays PK-8 Technical Assignment # 2

The buildings 170 nominal ton chiller is required by Standard 90.1 to have a minimum performance of a 2.80 Coefficient of Performance (COP), and a minimum Integrated Part Load Value (IPLV) of 3.05.

The maximum power of the chiller is 195.7 kW, or 55.7 tons. The actual capacity of the chiller at 100% capacity is 164 tons. The COP is equal to the useful energy absorbed divided by the total energy in, or

COP = Capacity / Powerin (2-2)

Using Equation 2-2,

COP = 170/3.05 = 3.37 > 3.05

This value passes the minimum requirement of COP for Standard 90.1. However, as chillers reduce capacity to conditions other the full-load, performance per kilowatt is lost. To analyze the chillers energy use at partload conditions the IPLV is found. This is done by creating variables equal to the COP of a chiller at various load percentages. The COP at 100%, 75%, 50%, and 25% are equal to A, B, C, and D, respectively. The IPLV is then defined by the equation,

IPLV = 0.01A + 0.42B + 0.45C + 0.12D (2-3)

This equation estimates the amount of time that a chiller will be used at each load capacity to determine an estimated real running COP, not the design COP. This accounts for the energy that the chiller uses for the bulk of its performance which has been proven to generally be at low load capacities. For example, the variable corresponding to 100% capacity is multiplied by 1%, implying that 100% capacity is only achieved for 1% of the running time.

The variables for the IPLV equation corresponding to the George W. Hays building are outlined in Figure B-5 of Appendix B. All tons and kilowatts were found from design equipment cut sheets. The determined IPLV, 5.01, meets the 3.05 requirement of Standard 90.1

George W. Hays PK-8 Technical Assignment # 2

Mechanical System First Cost

HVAC and Plumbing first costs were found on bid documents. These two areas included the span of the mechanical system first cost, not including fire protection. The HVAC system was bid at \$1,288,000 and the Plumbing system was bid at \$628,049. The corresponding building area is 66,338 ft². These values show that the total mechanical system cost was \$1,916,049, or \$28.88/ft².

George W. Hays PK-8 Technical Assignment # 2

Design Load Estimation

Carrier's Hourly Analysis Program (HAP) was used to model George W. Hays facility to find a design load estimation. This estimation is based off of data taken from design documents and heating and cooling outdoor air conditions from the ASHRAE Handbook of Fundamentals, 2005. The summer design conditions are based off of the temperature that weather data has shown to exceed 0.4% of the time. Conditions beyond these values are not part of the summer design conditions because the building has a thermal mass that will be able to absorb energy as long as the OA conditions do not exceed the 0.4% range for an extended period of days. A dry bulb temperature of 93 degrees Fahrenheit and a wet bulb temperature of 74 degrees Fahrenheit are the conditions that meet the 0.4% condition. For cooling design the 99.6%condition of 4 degrees Fahrenheit was used, meaning that 99.6% of the days in Cincinnati, Ohio are shown to exceed 4 degrees. Assumptions regarding the loads of the building are shown in Figure C-1 of Appendix C. The exact values for lighting were used in all spaces by looking at the electrical schedules and drawings for each space. These values are also shown in Figure B-3. The space occupancies and square footages were determined from building drawing documents. All assumptions concerning schedules, air and equipment properties and performance characteristics are in Appendices D, E, & F.

The design simulation resulted in a total cooling load close to what the drawings suggested. AHU-1 was designed to be 78 tons according to the Mechanical Schedules. The HAP analysis found a value of 71.9 tons. For AHU-2, the Mechanical Schedule showed 64.6 tons, where the HAP program showed 66.5 tons. Finally, the design for AHU-3 was 45.6 tons and the program determined 31.3 tons. The scheduled chiller has a nominal capacity of 170 tons (165 actual tons according to design documents) and the HAP analysis called for a 169.7 ton chiller. There is a clear flaw in that the sum of the HAP analysis loads is less then the scheduled loads, where the HAP chiller is sized to be larger then what the schedule calls for. The reason for this discrepancy is being looked into, but has not yet been determined. Despite this problem these values fall within the error possible for different design assumptions such as Watt/sq ft for miscellaneous loads. Another discrepancy may be with the program used to do the analysis. According to the engineer, the design loads were determined using Trane TRACE. Discrepancies between the modeled systems and the way the two different programs interoperate the systems may be a reason for error. Prior to the start of this

George W. Hays PK-8 Technical Assignment # 2

report the Trane TRACE file was destroyed due to improper archiving. Therefore, these files cannot be compared to determine what assumptions may have been made differently.

When the design simulation was run for heating loads a greater division arose between the HAP analysis and scheduled equipment. The Air Handling Unit schedule calls out for loads of 741 MBH, 603 MBH, and 1167 MBH for AHU-1, AHU-2, and AHU-3, respectively. However, engineering design documents showed that loads of 501.3 MBH, 410.1 MBH, and 387.3 MBH for AHU-1, AHU-2, and AHU-3, respectively. The same design documents found a total boiler load of 3286 MBH. The HAP analysis found values less then both of these. AHU-1 was just 253.1 MBH, AHU-2 was 193.3 MBH, and AHU-3 was 229.2 MBH, including other small unit heaters, the total boiler load was 696.9 MBH. Part of the reason for these discrepancies is because the boilers are designed for the HVAC equipment as well as the hot water supply to the building. Other reasons may include safety factors and allowances for future expansion. The HAP analysis will continue to be reviewed with design documents to find any differences in the model versus the drawings.

George W. Hays PK-8 Technical Assignment # 2

Annual Energy Consumption & Costs

The HAP program predicted the annual energy consumption of electricity and natural gas. The total power per year in the building is expected to be 1,023,685 kW. The building is also expected to consume 2,449 Therms of Natural Gas, which is approximately equal to 244,900 ft³ of natural gas per year. The energy consumption break up by system component is shown on Figure C-2.

This relationship is further explored in the yearly cost analysis of the building. Figure C-3a and C-3b shows a majority of the utility costs being spent on the HVAC equipment. In addition, this figure emphasizes the large cooling load and small heating load. This is perhaps due to a small envelope load in comparison to the interior loads. The envelope has been shown to be strong in the 90.1 portion of this report, by having both walls with a good resistance to heat, and a small window area to wall area proportion.

The proportional costs of C-3a are shown in a more specific dollar value in Figure C-3b. The dollar value was determined using an estimated energy rate. Because the building does not exist and cannot yet have any utility bills, the utility rates were estimated. According to the Energy Information Administration (EIA), the average cost of natural gas for commercial customers is \$1.62 dollars/ Therm. For electricity, the Average Commercial Rate is \$.0837 in the state of Ohio.

George W. Hays PK-8 Technical Assignment # 2

Bibliography

ASHRAE. 2005 ASHRAE Handbook – Fundamentals. Atlanta: American Society of Heating Refrigeration and Air Conditioning Engineers, Inc., 2001.

ASHRAE. ANSI/ASHRAE, Standard 90.1 – 2004: Energy Standard for Buildings Except Low-Rise Residential Buildings. Atlanta: American Society of Heating Refrigeration and Air Conditioning Engineers, Inc., 2004.

Energy Information Administration. "Average Retail Price of Electricity to Ultimate Customers by End-Use Sector, by State." *Electric Power Monthly* (October 2006). www.eia.doe.gov

Energy Information Administration. "Official Energy Statistics from the U.S. Government." *Natural Gas Monthly* (September 2006). www.eia.doe.gov

LEED. LEED 2005 Green Building Rating System for New Construction & Major Renovations: Washington D.C.: Leadership in Energy & Environmental Design, 2003.

George W. Hays PK-8 Technical Assignment # 2

Appendix A-Leeds

Figure A-1

Credit		Credits	Possible
Number	Category	Received	Credits
	Sustainable Sites		
Credit 1	Site Selection	1	1
Credit 2	Development Density & Community Connectivity	1	1
Credit 3	Brownfield Redevelopment	0	1
Credit 4.1	Public Transportation Access	0	1
Credit 4.2	Bicycle Storage & Changing Rooms	0	1
Credit 4.3	Low Emitting & Fuel Efficient Vehicles	0	1
Credit 4.4	Parking Capacity	0	1
Credit 5.1	Protect or Restore Habitat	0	1
Credit 5.2	Maximize Open Space	1	1
Credit 6.1	Stormwater Quantity Control	0	1
	, i		
Credit 6.2	Stormwater Quality Control	0	1
Credit 7.2	Non-Roof Heat Island Effect	0	1
Credit 7.3	Roof Heat Island Effect	1	1
Credit 8	Light Pollution Reducion	0	1
	Energy & Atmosphere		
Prerea 1	Fundamental Commissioning of the Building		Required
	Energy Systems		
Prerea 2	Minimum Energy Performance	Fail	Required
Prereg 3	Fundamental Refrigerant Management	Pass	Required
Credit 1	Optimize Energy Performance	0	1-10
Credit 2	On-Site Renewable Energy	0	1-3
Credit 3	Enhanceed Commissioning	- 1	1
Credit 4	Enhanced Refrigerant Management	0	1
Credit 5	Measurement & Verification	0	1
Credit 6	Green Power	0	1
	Indoor Environmental Quality		
Drorog 1	Minimum IAO Performance	Fail	Required
Drorog 7	Environmental Tobacco Smoke Control	Dace	Doquirod
reney∠ Crodit 1	Outdoor Air Delivery Monitoring	1 ass 	1
Credit 7	Increased Ventilation	0	1
Crodit 3.1	Construction IAO Management Plan Cons	0	1
Credit 3.7	Construction IAQ Management Plan Occu	0	1
Credit J.Z.	Low Emitting Adhesives & Sectorts	0	1
Credit 4.1	Low Emitting Autesives & Sealants	0	1
Credit 4.2 Credit 4.3	Low Emitting Famils & Coatings	0	1
Credit 4.0 Credit 4.4	Low Emitting Carper Systems	0	1
Credit E	Low Emitting Composite Wood & Agniller Products	1	1
Credit 6-1	Controllohility of Lighting Systems	1	1
Credit 6.1	Contronability of Lighting Systems	1	4
Credit 6.2	Controllability of Thermal Comfort Systems	1	4
Credit 7.1 Credit 7.2	Thermal Comfort Design	1	
Credit 7.2	Inermal Comfort Verification	U	1
urealt 8.1	Daylight /5% of Spaces	1	1
Credit 8.2	Views for 90% of Spaces	U	i i

LEED Compliance Check

George W. Hays PK-8 Technical Assignment # 2

Appendix B- Standard 90.1

Figure B-1

NAME/ DESCRIPTION	COMPONENT	COMPONENT R-VALUE	GROSS AREA	U-FACTOR	ASHRAE 90.1 TABLE 5.5.4 MAXIMUM U VALUES	COMPLIANCE
NORTH						
	Outside Air Film	0.17				
	4" Masonry	0.44				
Exterior Wall 1	1-1/2" Air Space	0.68	1			
Exterior Wall 1	2" Polystyrene Insulation	12.00	- 5824	0.066	0.151	YES
	8" CMU	12.00				
	Inside Air Film	0.68	1			
	Double Pane Low-E Clear Fixed	0.00				
Window 1	Metal Frame with Thermal Break		280	0.570	0.57	YES
Door 1	Clear Glass		42	0.570	0.67	YES
	Outside Air Film	0.17				
	Corrugated Metal Panel	0.05	1			
	1-1/2" Air Space	0.68	1			
Exterior Wall 2	2" Polystyrene Insulation	12.00	1332	0.068	0.151	YES
	8" CMU	1 11	1			
	Inside Air Film	0.68	-			
Door 2	Insulated Metal Non-Swinging	0.00	42	1 450	1.45	YES
NAME/ DESCRIPTION	COMPONENT	COMPONENT R-VALUE	GROSS AREA	U-FACTOR	ASHRAE 90.1 TABLE 5.5.4 MAXIMUM U VALUES	COMPLIANCE
EAST						
	Outside Air Film	0.17				
	4" Masonry	0.44				
Eutorior Mall 1	1-1/2" Air Space	0.68	7101	0.066	0 151	VEC
EXTGUOL MAULT	2" Polystyrene Insulation	12.00	/ //91	0.000	0.131	163
	8" CMU	1.11	1			
	Inside Air Film	0.68				
Window 1	Double Pane, Low-E Clear, Fixed Metal Frame with Thermal Break		501	0.570	0.57	YES
Door 1	Clear Glass		84	0.570	0.67	YES
	Outside Air Film	0.17				
	Corrugated Metal Panel	0.05	1			
	1-1/2" Air Snace	0.68	-			
Exterior Wall 2	2" Polystyrene Insulation	12.00	1332	0.068	0.151	YES
	8" CMU	1 11	-			
	Inside Air Film	0.68	1			
Door 2	Non-Swinging Insulated Metal	0.00	96	1.450	1.45	YES
SOUTH						
	Outside Air Film	0.17				
	4" Masonry	0.44				
	1-1/2" Air Space	0.68	1	0.000	0.454	
Exterior Wall 1	2" Polystyrene Insulation	12.00	4834	0.066	0.151	YES
	8" CMU	1.11	1			
	Inside Air Film	0.68				
	Double Pane, Low-E Clear, Fixed			0.570	0.57	
Window 1	Metal Frame with Thermal Break		272	0.570	0.57	YES
Door 1	Clear Glass		42	0.570	0.67	YES
	Outside Air Film	0.17				
	Corrugated Metal Panel	0.05]			
Exterior Mall 2	1-1/2" Air Space	0.68	1332	820.0	0 151	YES
	2" Polystyrene Insulation	12.00] 'JJ2	0.000	U.U68 U.151	YES
	8" CMU	1.11				
	Inside Air Film	0.68				

George W. Hays PK-8 Technical Assignment # 2

Figure B-1 (Cont'd)

NAME/ DESCRIPTION	COMPONENT	COMPONENT R-VALUE	GROSS AREA	U-FACTOR	ASHRAE 90.1 TABLE 5.5.4 MAXIMUM U VALUES	COMPLIANCE
WEST						
	Outside Air Film	0.17				
	4" Masonry	0.44			0 454	
Eutorior Mall 1	1-1/2" Air Space	0.68	0407	0.066		VES
	2" Polystyrene Insulation	12.00	1 0497 U.Ub t		0.151	11.3
	8" CMU	1.11				
	Inside Air Film	0.68				
Minday 4	Double Pane, Low-E Clear, Fixed		700	0.670	0.67	VEC
Window I	Metal Frame with Thermal Break		7.30	0.370	0.37	163
	Outside Air Film	0.17				
	Corrugated Metal Panel	0.05				
Extorior Wall 2	1-1/2" Air Space	0.68	1222	0.069	0 161	VES
	2" Polystyrene Insulation	12.00	1 1332	0.000	0.131	11.3
	8" CMU	1.11				
	Inside Air Film	0.68				
Window 4	Double Pane, Low-E Clear, Fixed		422	0.670	0.67	VEC
Window 1	Metal Frame with Thermal Break		432	0.370	0.37	163
Door 2	Non-Swinging, Insulated Metal		176	1.450	1.45	YES

NON-VERTICAL						
	Outside Air Film	0.17				
	Membrane Roofing	-				
Roof 1	3" Isocyanrate Insulation	15.00	35928	0.063	0.063	YES
	1-1/2" Metal Deck	-				
	Inside Air Film	0.68				
	Outside Air Film	0.17				
	Membrane Roofing	-				
	3" Isocyanrate Insulation	15.00				
Roof 2	Vapor Retarder	-	1043	0.061	0.063	YES
	1/2" Fire Rated Gypsum Wallboard	0.45				
	1-1/2" Metal Deck	-				
	Inside Air Film	0.68				

George W. Hays PK-8 Technical Assignment # 2

Figure B-2

	COMPONENT	COMPONENT SHGC	ASHRAE 90.1 TABLE 5.5- 4 MAXIMUM SHGC VALUES	COMPLIANCE
NORTH				
Window 1	Double Pane, Low-E Clear, Fixed Metal Frame with Thermal Break	0.37	0.49	YES
Door 1	Clear Glass	0.37	0.49	YES
EAST				
Window 1	Double Pane, Low-E Clear, Fixed Metal Frame with Thermal Break	0.37	0.39	YES
Door 1	Clear Glass	0.37	0.39	YES
SOUTH				
Window 1	Double Pane, Low-E Clear, Fixed Metal Frame with Thermal Break	0.37	0.39	YES
Door 1	Clear Glass	0.37	0.39	YES
WEST				
Window 1	Double Pane, Low-E Clear, Fixed Metal Frame with Thermal Break	0.37	0.39	YES
Window 1	Double Pane, Low-E Clear, Fixed Metal Frame with Thermal Break	0.37	0.39	YES

Envelope Compliance Check

George W. Hays PK-8 Technical Assignment # 2

Figure B-3

							90.1 W/ft2 for	
Room Type	Room #	#Fixtures	Туре	Watts	Total Watts	Area	space type	Allowed Watts
Entry	101	7	E3	94	658	387.1	1.3	503 23
Vestibule	102	1	F1	47	47	included in 101		0
Corridor	103	10	A2N	64	640	887.8	0.5	443.9
Corridor	103	2	F1	47	94	887.8		0
Corridor	103	2	F2	36	72	887.8		0
Corridor	103	2	T3	50	100	887.8		0
Gymnasium	105	30	H1	336	10080	5935.8	14	8310 12
RR	108	5	F2	36	180	372.3	0.9	335.07
RR	109	5	F2	36	180	372.3	0.9	335.07
Stairwell	110	4	W2	86	344	362.7	0.6	217.62
Teachers Prep	111	5	A7	96	480	289.2	1.3	375.96
Storage	112	2	A2	64	128	81.6	0.8	65.28
Classroom	113	13	A7	96	1248	1226.4	1.4	1716.96
Classroom	113	2	A7N	96	192	1226.4		0
Classroom	114	12	A3	96	1152	900	14	1260
Classroom	115	13	A3	96	1248	901.4	1.4	1261.96
Classroom	116	13	A3	96	1248	901.4	1.4	1261.00
Classroom	117	12	A3	96	1152	900	1.4	1260
Corridor	118	1	42N	64	64	104.7	0.5	52.35
Stainwell	119	2	- VV2	86	172	192.3	8.0	115 38
Classroom	120	13	Δ7	96	12/18	1226.4	1.4	176.96
Classroom	120	2	Δ7N	96	1240	1220.4	1.4	0
Classroom	120	10	A3	96	960	1082.4	1.4	1515 36
Classroom	121	2		96	192	1082.4	1.4	0
Classroom	121	15	A3	96	1440	1002.4	1.4	1509.9
Classroom	122	2	ABN	90	1440	1070.5	1.4	1303.5
Classroom	122	1	AJN A1	20	96	1070.5	1.4	1509.9
Classroom	123	14	A3	20	1344	1070.5	1.4	1505.5
Classroom	123	14	ABN	20	1044	1070.5		0
Classroom	123	10	A3	20	960	1070.5	1.4	1517.07
Classroom	124	2	ABN	90	100	1002.1	1.4	0
Classroom	124		A3	90	10/19	1002.1	1.4	1515.64
Classroom	125	13	ABN	90	1240	1002.0	1.4	0
Community	120	2 E	AJN A7	90	576	1002.0	1.4	564.2
Student Dining	120	1	ARN	90	96	2001.1	1.4	304.2 3700.99
Student Dining	127	6	AUN EE	150	90	2001.1	0.3	2700.55
Student Dining	127	2	10	1274	4100	2001.1		0
Student Dining	127		LI N1	1074 QC	4122 964	2001.1		0
Student Dining	127	2	N1 N	90	1024	2001.1		0
Student Dining	127	2	T1	150	132	2001.1		
Student Dining	127	6	וו דיז	150	900	2001.1		
Diatform	127		IZ AE	100	900	3001.1 900 5	0.0	
Plationni Conving Avec	120	6	AD	120	090 570	090.0	0.9	1000.00
Serving Area	129		A0 A0	90	576	1/00	0.9	1002
Corridor	130	4		64	64	104	0.5	02
Corridor	130	1	AZIN	04 0C	04	104	1 1	105.0
UTTICE	131		A3	96	96	96	1.1	105.6
Central Storage	132	2	A3 A2	30	192	125.1	0.0	100.08
VVorkroom	133	5	AJ	96	480	295.5	1.2	J54.6
vvorkroom	133		AJN	96	36	295.5	0.0	
Storage	134	4	A2	64	256	197.6	0.8	158.08
Storage	135	1 2 1	JÏ	96	192	171.6	U.8	137.28

George W. Hays PK-8 Technical Assignment # 2

Figure B-3 (Cont'd)

Room Type	Room #	#Fixtures	Туре	Watts	Total Watts	Area	90.1 W/ft2 for	Allowed Watts
0.11	204		50		170	207.4	ог	4.40.55
Corridor	201	5	F3	94	470	297.1	0.5	148.55
Corridor	202	14	A2N	64	896	1389.4	0.5	694.7
Corridor	202	1	F2	36	36	1389.4		
Corridor	202	5	F6	4/	235	1389.4		U 100.05
Corridor	203	8	A2N	64	512	387.7	U.5	193.85
Computer Lab	204	1	Abi	96	96	1000.5	1.4	1400.7
Computer Lab	204	13	A/	96	1248	1000.5		0
Computer Lab	204	1	AZN	96	96	1000.5		0
Reading Room	205	12	M1	94	1128	1204	1.2	1444.8
Reading Room	205	4	M2	94	376	1204		0
Stairwell	208	4	W2	86	344	362.7	0.6	217.62
Conference	209	2	A7	96	192	151.9	1.3	197.47
Storage	210	2	A2	64	128	81.6	0.8	65.28
Classroom	211	13	A7	96	1248	1226.4	1.4	1716.96
Classroom	211	2	A7N	96	192	1226.4		0
Classroom	212	12	A3	96	1152	900	1.4	1260
Classroom	213	13	A3	96	1248	901.4	1.4	1261.96
Classroom	214	13	A3	96	1248	901.4	1.4	1261.96
Classroom	215	12	A3	96	1152	900	1.4	1260
Corridor	216	1	A2N	64	64	104.7	0.5	52.35
Stairwell	217	2	W2	86	172	198	0.6	118.8
Classroom	218	13	A7	96	1248	1226.4	1.4	1716.96
Classroom	218	2	A7N	96	192	1226.4		0
Classroom	219	9	A3	96	864	905	1.4	1267
Classroom	220	12	A3	96	1152	901.4	1.4	1261.96
Classroom	220	1	A3N	96	96	901.4		0
Classroom	221	13	A3	96	1248	901.4	1.4	1261.96
Classroom	221	1	A3N	96	96	901.4		0
Classroom	222	12	A3	96	1152	900	1.4	1260
Science Room	223	11	A3	96	1056	898.6	1.4	1258.04
Science Room	223	1	A3N	96	96	898.6		0
Art Room	224	10	A3	96	960	902.6	1.4	1263.64
Art Room	224	1	AGN	96	96	902.6		0
Music Room	225	20	A3	96	1920	1353	1.4	1894.2
Music Room	225	2	AGN	96	192	1353		0
Mechanical	226	9	C1	64	576	1317.1	12	1580.52
Stainwell	227	2	C1	64	128	768.4	0.6	461.04
Mechanical	228	17	C1	64	1088	1484.2	12	1781.04
Corridor	104 104N	5	A7	96	480	189.9	0.5	94.95
Corridor	104 104N	2	47N	96	192	189.9	0.0	0
Recention	104,10414	1	Δ7	96	96	298.9	13	388.57
Reception	10473	1	Δ7N	96	96	298.9	1.0	000.01
Secretarial	104A	4	Δ7	96	384	298.4	11	328.24
Health Clinic	1040	- 4	 	90	480	230.4	1.1	391.1
Health Clinic	1040	1		90	400	301.1	1	0
Laundry	1040	1	A014	64	50		90	27.66
Office	104D	1	A7	40 96	384	1/83	1.1	163.13
Conference	104L 104E	4	 AG	90	384	740.5	13	300.10
Office	104F	4	A7	96	107	240.J	1.0	109.46
Moil/Conv	1040	4	A7	96	132	0.00 040.6	1.1	100.40
Storogo	1041	4	A7	90	102	243.0	1.2	110.0
Storage	104K	1	- A/	30	192	64.0	0.0	E1 04
	1041	1	- JI - D1	30	90 65	04.0 44.0	0.0	20.04
77	I 104F		UZ	1 03	1 00	44.3	0.3	1 39.07

George W. Hays PK-8 Technical Assignment # 2

Figure B-3 (Cont'd)

Room Type	Room #	#Fixtures	Туре	Watts	Total Watts	Area	90.1 VV/ft2 for space type	Allowed Watts
RR	104Q	1	B2	65	65	44.3	0.9	39.87
Classroom	104R	4	A1	96	384	249.4	1.4	349.16
Conference	104S	3	A7	96	288	205.8	1.3	267.54
RR	104T	1	B2	65	65	43.6	0.9	39.24
Storage	105A	4	J1	96	384	277.8	0.8	222.24
Locker Room	105B	4	J1	96	384	266.8	0.6	160.08
Locker Room	105B	1	J1N	96	96	266.8		0
RR	105C	2	J1	96	192	130.9	0.9	117.81
RR	105D	1	J1	96	96	130.9	0.9	117.81
RR	105D	1	J1N	96	96	130.9		0
Locker Room	105E	4	J1	96	384	266.8	0.6	160.08
Locker Room	105E	1	J1N	96	96	266.8		0
Office	105F	1	J1	96	96	75.6	1.1	83.16
Shower	105G	1	J1	96	96	64.4	0.6	38.64
Corridor	107	5	A2N	64	320	464.4	0.5	232.2
Elevator Equipment	111A	1	C1	64	64	52.4	1.2	62.88
RR	113A	1	B2	65	65	48.4	0.9	43.56
RR	113B	1	 B2	65	65	48.4	0.9	43.56
RR	113C	1	 B2	65	65	48.4	0.9	43.56
Janitor	118A	1	C1	64	64	27	0.8	21.6
RR	120A	1	B2	65	65	48.4	0.9	43.56
RR	120B	1	 B2	65	65	48.4	0.9	43.56
RR	1200	1	 B2	65	65	48.4	0.9	43.56
RR	121A	1	 B3	65	65	51.7	0.9	46.53
RR	122A	1	 B3	65	65	49.5	0.9	44.55
RR	123A	1	 B3	65	65	49.5	0.9	44.55
RR	124A	1	 B3	65	65	51.8	0.9	46.62
RR	125A	1	 B3	65	65	51.8	0.9	46.62
Storage	127A	2	A2	64	128	233	0.8	186.4
	400.4				400			
Ware Washing	129A	2	A3	96	192	included in 129		
Locker Room	129B	2	A2	64	128	included in 129		
RR	129C	1	B2	65	65	included in 129		
Dietician Office	129D	1	A3	96	96	included in 129		
Drv Food Storage	129F	3	A2	64	192	included in 129		
, ,								
Prep Area	129G	3	A3	96	288	included in 129		
Prep Area	129G	3	A3N	96	288	included in 129		0
Loading	130A	1	A2N	64	64	120	1.2	144
Mechanical	137A	3	A3N	96	288	288	1.2	345.6
Conference	205A	4	A6	96	384	200.4	1.3	260.52
Office	205B	2	A7	96	192	120.1	1.1	132.11
Storage	205C	2	A7	96	192	148.6	0.8	118.88
Tech Center	205D	5	A3	96	480	379.1	1.1	417.01
Tech Center	205D	1	A3N	96	96	379.1		0
Storage	205F	1	A2	64	64	98.4	0.8	78.72
RR	211A	1	B2	65	65	48.4	0.9	43.56
RR	211B	1	B2	65	65	48.4	0.9	43.56
BB	2110	1	B2	65	65	48.4	0.9	43.56

George W. Hays PK-8 Technical Assignment # 2

Figure B-3 (Cont'd)

Room Type	Room #	#Fixtures	Туре	Watts	Total Watts	Area	90.1 VV/ft2 for space type	Allowed Watts
Janitor	216A	1	C1	64	64	27	0.8	21.6
RR	218A	1	B2	65	65	48.4	0.9	43.56
RR	218B	1	B2	65	65	48.4	0.9	43.56
RR	218C	1	B2	65	65	48.4	0.9	43.56
Storage	224A	2	A2	64	128	122	0.8	97.6
Storage	224B	2	A2	64	128	103.3	0.8	82.64
Storage	225A	2	A3	96	192	196.9	0.8	157.52
Stairwell	301	4	W2	86	344	362.7	0.6	217.62
Corridor	302	7	A2N	64	448	579.4	0.5	289.7
Teacher Prep	303	6	A7	96	576	315.7	1.3	410.41
Conference	304	3	A7	96	288	155.4	1.3	202.02
Storage	305	2	A2	64	128	93.1	0.8	74.48
Classroom	306	13	A7	96	1248	1226.7	1.4	1717.38
Classroom	306	2	A7N	96	192	1226.7		0
Classroom	307	12	A3	96	1152	900	1.4	1260
Classroom	307	12	A3	96	1152	900		0
Classroom	308	13	A3	96	1248	901.4	1.4	1261.96
Classroom	309	13	A3	96	1248	901.4	1.4	1261.96
Classroom	310	12	A3	96	1152	900	1.4	1260
Stairwell	311	2	W2	86	172	198	0.6	118.8
Corridor	312	1	A2N	64	64	104.7	0.5	52.35
Janitor	312A	1	C1	64	64	27	0.8	21.6
Mechanical Mezzanine	313	11	C1	64	704	1213.5	1.2	1456.2
							TOTAL ALLOWED WATTS	74786.51

Interior Lighing Compliance Check

George W. Hays PK-8 Technical Assignment # 2

Figure B-4

TABLE 9.5.1 Lighting Power Densities Using the Building Area Method

Lighting Power De	nsity
Building Area Type ^a	(W/ft2)
Automotive Facility	0.9
Convention Center	1.2
Court House	1.2
Dining: Bar Lounge/Leisure	1.3
Dining: Cafeteria/Fast Food	1.4
Dining: Family	1.6
Religious Building	1.3
Retail	1.5
School/University	1.2
Sports Arena	1.1
Town Hall	1.1
Transportation	1.0
Warehouse	0.8
Workshop	1.4

^a In cases where both general building area type and a specific building area type are listed, the specific building area type shall apply.

From ASHRAE Standard 90.1

George W. Hays PK-8 Technical Assignment # 2

Figure B-5

Variable	Load %	Tons	kW	COP	Multiplier
A	100%	164	195.7	2.941441	0.01
В	75%	123	103.1	4.187488	0.42
С	50%	82	50.7	5.676923	0.45
D	25%	41	25.8	5.577907	0.12
				IPLV	5.01

IPLV Calculation

George W. Hays PK-8 Technical Assignment # 2

Appendix C-Building Simulation

Figure C-1

			People [Btu	ı/hr*person]
Space Type	Lighting	Misc Load	Latent	Sensible
Kitchen Area	Exact Wattage	300000 Btu/hr	295	455
Office	Exact Wattage	1 Watt/sq ft	245	205
Computer	Exact Wattage	3 Watt/sq ft	245	205
Conference	Exact Wattage	0.5 Watt/sq ft	245	205
Classroom	Exact Wattage	0.0 Watt/sq ft	245	205
Gymnasium	Exact Wattage	0.0 Watt/sq ft	295	455
Other	Exact Wattage	0.0 Watt/sq ft	-	-

Load Assumptions

George W. Hays PK-8 Technical Assignment # 2

Figure C-2

Annual Coil Loads

Component	Load (kBTU)	(kBTU/ft²)
Cooling Coil Loads	3,440,675	51.720
Heating Coil Loads	189,519	2.849
Grand Total	3,630,194	54.568

Energy Consumption by System Component

Component	Site Energy (kBTU)	Site Energy (kBTU/ft²)	Source Energy (kBTU)	Source Energy (kBTU/ft ²)
Air System Fans	1,601,236	24.070	5,718,702	85.962
Cooling	713,788	10.730	2,549,241	38.320
Heating	244,923	3.682	244,923	3.682
Pumps	0	0.000	0	0.000
Cooling Towers	0	0.000	0	0.000
HVAC Sub-Total	2,559,947	38.481	8,512,866	127.964
Lights	1,104,782	16.607	3,945,649	59.310
Electric Equipment	72,981	1.097	260,647	3.918
Misc. Electric	0	0.000	0	0.000
Misc. Fuel Use	0	0.000	0	0.000
Non-HVAC Sub-Total	1,177,763	17.704	4,206,295	63.228
Grand Total	3,737,710	56.185	12,719,161	191.192

Notes

1. 'Cooling Coil Loads' is the sum of all air system cooling coil loads.

Heating Coil Loads' is the sum of all air system heating coil loads.
 Site Energy is the actual energy consumed.

4. Source Energy is the site energy divided by the electric generating efficiency (28.0%).

5. Source Energy for fuels equals the site energy value.

6. Energy per unit floor area is based on the gross building floor area.

 Gross Floor Area
 66525.6
 ft²

 Conditioned Floor Area
 66525.6
 ft²

Loads by Components

Annual Component Cost Percentage

Figure C-3b

Annual Energy Cor	sumption
Component	GeorgeW. Hays PK-8
HVAC Components	
Electric (kWh)	678,504
Natural Gas (Therm)	2,449
Non-HVAC Components	0.05.400
Electric (kvvn)	345,182
Natural Gas (Therm)	0
Totals	
Electric (kWh)	1,023,685
Natural Gas (Them)	2,449

Annual Costs	
	GeorgeW. Hays
	PK-8
Component	(\$)
HVAC Components	
Electric	56,791
Natural Gas	3,103
HVAC Sub-Total	59,894
Non-HVAC Components	
Electric	28,892
Non-HVAC Sub-Total	28,892
Grand Total	88,786

Annual Energy Consumption and Annual Costs

George W. Hays PK-8 Technical Assignment # 2

Appendix D- Simulation Schedules

Cafiteria (Fractional)

Hourly Profiles: 1:Profile One

Prome	One																							
Hour	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Value	0	0	0	0	0	0	0	10	10	10	10	100	100	100	100	10	10	0	0	0	0	0	0	0

2:Profile Two

Hour	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Assignments:

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Design	1	1	1	1	1	1	1	1	1	1	1	1
Monday	1	1	1	1	1	1	1	1	1	1	1	1
Tuesday	1	1	1	1	1	1	1	1	1	1	1	1
Wednesday	1	1	1	1	1	1	1	1	1	1	1	1
Thursday	1	1	1	1	1	1	1	1	1	1	1	1
Friday	1	1	1	1	1	1	1	1	1	1	1	1
Saturday	2	2	2	2	2	2	2	2	2	2	2	2
Sunday	2	2	2	2	2	2	2	2	2	2	2	2
Holiday	2	2	2	2	2	2	2	2	2	2	2	2

Cafe Lighting (Fractional)

Hourly Profiles: 1:Profile One

Hour	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Value	0	0	0	0	0	0	0	100	100	100	100	100	100	100	100	100	100	0	0	0	0	0	0	0

2:Profile Two

Hour	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

George W. Hays PK-8 Technical Assignment # 2

Assignments:

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Design	1	1	1	1	1	1	1	1	1	1	1	1
Monday	1	1	1	1	1	1	1	1	1	1	1	1
Tuesday	1	1	1	1	1	1	1	1	1	1	1	1
Wednesday	1	1	1	1	1	1	1	1	1	1	1	1
Thursday	1	1	1	1	1	1	1	1	1	1	1	1
Friday	1	1	1	1	1	1	1	1	1	1	1	1
Saturday	2	2	2	2	2	2	2	2	2	2	2	2
Sunday	2	2	2	2	2	2	2	2	2	2	2	2
Holiday	2	2	2	2	2	2	2	2	2	2	2	2

Classroom (Fractional)

Hourly Profiles: 1:Profile One

:Pre	ome	Une																							
H	our	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Va	alue	0	0	0	0	0	0	20	100	100	100	100	100	100	100	100	100	20	0	0	0	0	0	0	0

2:Profile Two

Hour	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

3:Profile Three

Hour	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Value	0	0	0	0	0	0	0	5	5	5	5	5	5	5	5	5	5	5	0	0	0	0	0	0

Assignments:

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Design	3	1	1	1	1	1	1	1	1	1	1	1
Monday	1	1	1	1	1	3	3	3	1	1	1	1
Tuesday	1	1	1	1	1	3	3	3	1	1	1	1
Wednesday	1	1	1	1	1	3	3	3	1	1	1	1
Thursday	1	1	1	1	1	3	3	3	1	1	1	1
Friday	1	1	1	1	1	3	3	3	1	1	1	1
Saturday	2	2	2	2	2	2	2	2	2	2	2	2
Sunday	2	2	2	2	2	2	2	2	2	2	2	2
Holiday	2	2	2	2	2	2	2	2	2	2	2	2

Food Prep (Fractional)

Hourly Profiles: 1:Profile One

FIOINE	One																							
Hour	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Value	0	0	0	0	0	0	0	0	0	20	80	100	100	100	100	50	0	0	0	0	0	0	0	0

2:Profile Two

Hour	00	01	02	03	04	05	06	07	80	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Value	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

George W. Hays PK-8 Technical Assignment # 2

3:Profile Three

101110																								
Hour	00	01	02	03	04	05	06	07	80	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Value	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

4:Profile Four

Hour	00	01	02	03	04	05	06	07	80	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Value	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

Assignments:

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Design	1	1	1	1	1	1	1	1	1	1	1	1
Monday	2	2	2	2	2	2	2	2	2	2	2	2
Tuesday	2	2	2	2	2	2	2	2	2	2	2	2
Wednesday	2	2	2	2	2	2	2	2	2	2	2	2
Thursday	2	2	2	2	2	2	2	2	2	2	2	2
Friday	2	2	2	2	2	2	2	2	2	2	2	2
Saturday	3	3	3	3	3	3	3	3	3	3	3	3
Sunday	4	4	4	4	4	4	4	4	4	4	4	4
Holiday	4	4	4	4	4	4	4	4	4	4	4	4

Gym (Fractional)

Hourly Profiles: 1:Profile One

Prome	One																							
Hour	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Value	0	0	0	0	0	0	0	0	5	5	5	5	5	5	5	5	10	30	61	100	100	30	0	0

2:Profile Two

Hour	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Value	0	0	0	0	0	0	0	0	5	5	5	5	5	5	5	5	5	10	10	10	0	0	0	0

3:Profile Three

Hour	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Assignments:

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Design	1	1	1	1	1	1	1	1	1	1	1	1
Monday	2	2	2	2	2	2	2	2	2	2	2	2
Tuesday	2	2	2	2	2	2	2	2	2	2	2	2
Wednesday	2	2	2	2	2	2	2	2	2	2	2	2
Thursday	2	2	2	2	2	2	2	2	2	2	2	2
Friday	1	1	1	1	1	1	1	1	1	1	1	1
Saturday	3	3	3	3	3	3	3	3	3	3	3	3
Sunday	3	3	3	3	3	3	3	3	3	3	3	3
Holiday	3	3	3	3	3	3	3	3	3	3	3	3

George W. Hays PK-8 Technical Assignment # 2

Gym Lighting (Fractional)

Hourly Profiles: 1:Profile One

•	FIOTHE	One																							
	Hour	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
	Value	0	0	0	0	0	0	0	100	100	100	100	100	100	100	100	100	100	100	100	100	0	0	0	0

2:Profile Two

Hour	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

3:Profile Three

Hour	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Value	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

4:Profile Four

Hour	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Value	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

Assignments:

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Design	1	1	1	1	1	1	1	1	1	1	1	1
Monday	2	2	2	2	2	2	2	2	2	2	2	2
Tuesday	2	2	2	2	2	2	2	2	2	2	2	2
Wednesday	2	2	2	2	2	2	2	2	2	2	2	2
Thursday	2	2	2	2	2	2	2	2	2	2	2	2
Friday	2	2	2	2	2	2	2	2	2	2	2	2
Saturday	3	3	3	3	3	3	3	3	3	3	3	3
Sunday	4	4	4	4	4	4	4	4	4	4	4	4
Holiday	4	4	4	4	4	4	4	4	4	4	4	4

Lighting (Fractional)

Hourly Profiles: 1:Profile One

	•																							
Hour	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Value	0	0	0	0	0	0	0	100	100	100	100	100	100	100	100	100	100	100	100	100	0	0	0	0

2:Profile Two

	Hour	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
-		•	•	•	0	•	_	•	•	0	^	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

George W. Hays PK-8 Technical Assignment # 2

Assignments:

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Design	1	1	1	1	1	1	1	1	1	1	1	1
Monday	1	1	1	1	1	1	1	1	1	1	1	1
Tuesday	1	1	1	1	1	1	1	1	1	1	1	1
Wednesday	1	1	1	1	1	1	1	1	1	1	1	1
Thursday	1	1	1	1	1	1	1	1	1	1	1	1
Friday	1	1	1	1	1	1	1	1	1	1	1	1
Saturday	2	2	2	2	2	2	2	2	2	2	2	2
Sunday	2	2	2	2	2	2	2	2	2	2	2	2
Holiday	2	2	2	2	2	2	2	2	2	2	2	2

Office (Fractional)

Hourly Profiles: 1:Profile One

Prome	One																							
Hour	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Value	0	0	0	0	0	0	30	100	100	100	100	100	100	100	100	100	90	71	21	0	0	0	0	0

2:Profile Two

Hour	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

3:Profile Three

Hour	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Value	0	0	0	0	0	0	0	5	20	30	30	30	30	30	30	30	30	30	20	5	0	0	0	0

Assignments:

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Design	1	1	1	1	1	1	1	1	1	1	1	1
Monday	1	1	1	1	1	3	3	3	1	1	1	1
Tuesday	1	1	1	1	1	3	3	3	1	1	1	1
Wednesday	1	1	1	1	1	3	3	3	1	1	1	1
Thursday	1	1	1	1	1	3	3	3	1	1	1	1
Friday	1	1	1	1	1	3	3	3	1	1	1	1
Saturday	2	2	2	2	2	2	2	2	2	2	2	2
Sunday	2	2	2	2	2	2	2	2	2	2	2	2
Holiday	2	2	2	2	2	2	2	2	2	2	2	2

T-STAT (Fan / Thermostat)

Hourly Profiles: 1:Profile One

FIOINE	One																							
Hour	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Value	U	U	U	U	U	U	0	0	0	0	0	0	0	0	0	0	0	0	0	0	U	U	U	U

2:Profile Two

Hour	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Value	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U

George W. Hays PK-8 Technical Assignment # 2

O = Occupied; U = Unoccupied

Assignments:

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Design	1	1	1	1	1	1	1	1	1	1	1	1
Monday	1	1	1	1	1	1	1	1	1	1	1	1
Tuesday	1	1	1	1	1	1	1	1	1	1	1	1
Wednesday	1	1	1	1	1	1	1	1	1	1	1	1
Thursday	1	1	1	1	1	1	1	1	1	1	1	1
Friday	1	1	1	1	1	1	1	1	1	1	1	1
Saturday	1	1	1	1	1	1	1	1	1	1	1	1
Sunday	2	2	2	2	2	2	2	2	2	2	2	2
Holiday	2	2	2	2	2	2	2	2	2	2	2	2

George W. Hays PK-8 Technical Assignment # 2

Appendix E- Plant Inputs

Boiler Inputs

Note: The drawings called for two boilers in parallel for the same system. It was assumed that the boiler efficiency does not vary significantly under part load conditions and only one boiler was put into HAP because of HAP modeling restrictions.

1. General Details:

Plant Name	Boilerl
Plant Type	Hot Water Boiler Plant

2. Air Systems served by Plant:

Air System Name	Mult.
AHU1	1
AHU2	1
АНИЗ	1
CUH-1	1
CUH-2	1
CUH-4	1
UH-1	1
UH-2	1
UH-3	1

3: Configuration

Boiler Name	
Est. Max Load	MBH
Full Load Capacity	MBH
Hot Water Flow Rate	gpm

5: Distribution

Distribution System

Type Primary Only, Constant S	peed	
Coil Delta-T at Design	28.3	°F
Pipe Heat Loss Factor	0.0	%

Fluid Properties

Name	Ethylene Glycol - 25% Soluti	ion	
Density		2.4	lb/ft ³
Specific Heat	0	.95	BTU / (lb - °F)

Primary Loop

Pump for	Flow (gpm)	Head (ft wg)	Mechanical Efficiency (%)	Electrical Efficiency (%)
B-1	260.0	0.0	80.0	94.0

George W. Hays PK-8 Technical Assignment # 2

Chiller Inputs

l. General D	etails:
Plant Name	Chilled Water
Plant Type	Chiller Plant

2. Air Systems served by Plant:

Air System I	Name Mult.	
AHU1		1
AHU2		1
AHU3		1

3: Configuration

Number of Chillers		
Plant Control	Equal Unloading	
Design LCHWT	44.0 °I	F
Maximum LCHWT	44.0 °F	F
Cooling Tower Configuration	One tower for each W/C chiller	

4: Schedule of Equipment

Sequenc e	Chiller Name	Full Load Capacit y (Tons)	Cooler Flow Rate (gpm)	Condens er Flow Rate (gpm)	Cooling Tower Name	Tower Flow Rate (gpm)
CH-1	Chiller l	170.0	300.0	0.0	<none></none>	0.0
	Totals:	170.0	300.0	0.0	Totals:	0.0

5: Distribution

Distribution System

Type Primary Only, Constant Spe		
Coil Delta-T at Design	10.0	°F
Pipe Heat Gain Factor	0.0	%

Fluid Properties

Name	Vater	
Density	62.4	lb/ft³
Specific Heat	1.00	BTU / (lb - °F)

Primary Loop

Pump for	Flow Head (gpm) (ft wg)		Mechanical Efficiency (%)	Electrical Efficiency (%)
CH-1	300.0	0.0	80.0	94.0

George W. Hays PK-8 Technical Assignment # 2

Appendix F- AHU Inputs

AHU-1

Note: Because AHU-1,2,&3 are similar inputs for AHU-1 only are given

1. General Details Air System Name Equipment Class Air System Type	:				Chilled V	AHU1 Vater AHU VAV	
Number of zones						54	
2. System Compon Ventilation Air Dat	ents: ta:						
Airflow Control Ventilation Sizing Minimum Airflow	Method			Sum of	Space O	oportional A Airflows 0	%
Unocc. Damper P	osition					Closed	
Damper Leak Rat						0	%
	Level						ррш
Economizer Data:				-			
Control				Integrate	d enthal	py control 88 0	°F
Lower Cutoff						0.0	°F
Setpoint						50.0	°F
Heating Source						Hot Water	-
Schedule					. JFMAN	IJJASOND	
Coil position			1	Downstrea	am of Mi	xing Point	
Central Cooling D Supply Air Tempo Coil Bypass Facto Cooling Source . Schedule Capacity Control	ata: erature or		Cor	ıstant Ten	Chil JFMAN nperatur	54.0 0.100 lled Water IJJASOND e - Fan On	°F
Supply Fan Data: Fan Type Configuration Fan Performance					Forwa	rd Curved Draw-thru 6.00	in wg
Overall Efficiency	7					54	%
% Airflow	100	90	80	70	60	50	
% kW	100	91	81	72	61	54	
			1			7	
% Airflow	40	30	20	10	0	_	
% kW	46	40	33	27	21		
Duct System Data: Supply Duct Data: Duct Heat Gain Duct Leakage						0 0	% %

Return Duct or Plenum Data:

George W. Hays PK-8 Technical Assignment # 2

Return Air Via Ducted Return

Return Fan Data:

Fan Type Forward Curved

 Fan Performance
 3.00
 in wg

 Overall Efficiency
 54
 %

% Airflow	100	90	80	70	60	50
% kW	100	91	81	72	61	54
						_
% Airflow	40	30	20	10	0	
% kW	46	40	33	27	21	

Thermostats and Zone Data:

Zone All	
Cooling T-stat: Occ	°F
Cooling T-stat: Unocc	°F
Heating T-stat: Occ	°F
Heating T-stat: Unocc 60.0	°F
T-stat Throttling Range 3.00	°F
Diversity Factor	%
Direct Exhaust Airflow 0.0	CFM
Direct Exhaust Fan kW 0.0	kW
Thermostat Schedule	
Unoccupied Cooling is Available	
Supply Terminals Data:	
Zone All	
Terminal Type VAV box with RH	
Minimum Airflow 40	% of supply air
Reheat Coil Source Hot Water	
Reheat Coil Schedule JFMAM* ** SOND	
Zone Heating Units:	
Zone All	
Zone Heating Unit Type None	
Zone Unit Heat Source Hot Water	
Zone Heating Unit Schedule JFMAMJJASOND	
3. Sizing Data (User-Modified):	
System Sizing Data:	
Cooling Supply Temperature 54.0	°F
Supply Fan Airflow 22000.0	CFM
Ventilation Fan Airflow 11066.0	CFM
Hydronic Sizing Specifications:	
Chilled Water Delta-T 14.0	°F
Hot Water Delta-T	°F
Safety Factors:	
Cooling Sensible 0	%
Cooling Latent 0	%
Heating 0	%
Zone Sizing Data:	
Zone Airflow Sizing Method Peak zone sensible load	

George W. Hays PK-8 Technical Assignment # 2

Space Airflow Sizing Method Individual peak space loads

4. Equipment Data No Equipment Data required for this system.

CUH-1

Note: CUH-1 is the only Unit Heater with inputs shown, however six similar Unit Heaters exist in the building

%

1.	General Details:	

Air System Name	CUH-1
Equipment Class	Terminal Units
Air System Type	2-Pipe Fan Coil
Number of zones	
Ventilation	Direct Ventilation

2. Ventilation System Components:

(Common Ventilation System not used: no inputs)

3. Zone Components: Space Assignments:

Zone 1: Zone 1	
119 x1	
hermostats and Zone Data:	
Zone All	
Cooling T-stat: Occ. 75.0	°F
Cooling T-stat: Unocc	°F
Heating T-stat: Occ	°F
Heating T-stat: Unocc	°F
T-stat Throttling Range 3.00	°F
Thermostat Schedule	
Unoccupied Cooling is Available	
ommon Terminal Unit Data:	
eating Coll:	0.
Design Supply Temperature	۰r
Schedule	
Fan Control	
Ventilation Sizing Method Sum of Space OA Airflows	
erminal Units Data:	
Zone All	
Terminal Type Fan Coil	
Minimum Airflow	CFM
Fan Performance	in we
Fan Overall Efficiency	%

4. Sizing Data (Computer-Generated): System Sizing Data:

George W. Hays PK-8 Technical Assignment # 2

Heating Supply Temperature 124.0	°F
Hydronic Sizing Specifications:	
Chilled Water Delta-T 2.0	°F
Hot Water Delta-T 18.0	°F
Safety Factors:	
Cooling Sensible 0	%
Cooling Latent 0	%
Heating0	%
5	

Zone Sizing Data:

Zone Airflow Sizing Method Sum of space airflow rates Space Airflow Sizing Method Individual peak space loads

Zone	Supply Airflow (CFM)	Zone Htg Unit (MBH)	Reheat Coil (MBH)	Ventilation (CFM)
1	230.0	-	-	0.0

5. Equipment Data No Equipment Data required for this system.